-
Data Science Demo 1
In this Demo you will understand what is data science,who is data scientist ...etc
-
About Faculty 04 minLecture1.1
-
What is Data Science 11 minLecture1.2
-
Who is data scientist 06 minLecture1.3
-
who can learn this course 11 minLecture1.4
-
Data Science Process Quick Tour 27 minLecture1.5
-
Data Science Quiz 4 questionsQuiz1.1
-
-
Python Introduction and Anaconda Installation 2
We will learn what is python and why we are using python in data science . why not other languages like c,c++,jave ... etc. We also learn how to install anaconda and more information about spyder IDE
-
Python Introduction and Anaconda Installation 47 minLecture2.1
-
Quiz on Introduction 6 questionsQuiz2.1
-
Quiz on Installation 4 questionsQuiz2.2
-
-
Python Data Types 7
We will learn int,float,complex,bool,str data types
-
Python as Calculator 10 minLecture3.1
-
Quiz on playing numbers 2 questionsQuiz3.1
-
Python int,float and complex data types 09 minLecture3.2
-
Quiz on numbers data types 4 questionsQuiz3.2
-
Python string Data types 24 minLecture3.3
-
Quiz on Strings 7 questionsQuiz3.3
-
Mutable Vs Immutable 16 minLecture3.4
-
-
Python Lists 5
-
Define List 14 minLecture4.1
-
Read List Items 10 minLecture4.2
-
Change List Items 08 minLecture4.3
-
List Memory allocation 05 minLecture4.4
-
Quiz on List 2 questionsQuiz4.1
-
-
Operators 4
-
Comparison Operators 19 minLecture5.1
-
Boolean Operators and Numpy Boolean Operators 11 minLecture5.2
-
Filtering data frame using operators 26 minLecture5.3
-
Quiz on Operators 2 questionsQuiz5.1
-
-
Control Flows 6
-
if elif elif else 16 minLecture6.1
-
while loop 13 minLecture6.2
-
for loop on string ,list,dict 21 minLecture6.3
-
for loop on numpy array 13 minLecture6.4
-
for loop on data frame 12 minLecture6.5
-
Quiz on Control Flows 7 questionsQuiz6.1
-
-
Functions 7
-
System Defined Functions 12 minLecture7.1
-
User Defined Functions 25 minLecture7.2
-
Tuple 13 minLecture7.3
-
Scope of variable objects in functions 20 minLecture7.4
-
Nested Functions 15 minLecture7.5
-
Default and Flexible Arguments 23 minLecture7.6
-
Quiz on Functions 3 questionsQuiz7.1
-
-
Methods 2
-
Methods 25 minLecture8.1
-
Quiz on Methods 0 questionQuiz8.1
-
-
Modules 2
-
Create and use Modules 26 minLecture9.1
-
Quiz on Modules 0 questionQuiz9.1
-
-
Packages 3
-
User Defined Packages 46 minLecture10.1
-
System Defined Packages 18 minLecture10.2
-
Quiz on packages 0 questionQuiz10.1
-
-
Dictionaries 5
-
Why we need dictionaries and Create simple dictionary 12 minLecture11.1
-
Dictionary Keys are Mutable and values are immutable 12 minLecture11.2
-
Nested Dictionaries 07 minLecture11.3
-
Create DataFrame using dictionary 12 minLecture11.4
-
Quiz on Dictionaries 2 questionsQuiz11.1
-
-
Lambda Functions 4
-
Lambda Map Function 20 minLecture12.1
-
Lambda Filter Function 10 minLecture12.2
-
Lambda Reduce Function 09 minLecture12.3
-
Quiz on Lambda Functions 2 questionsQuiz12.1
-
-
Syntax Errors and Exceptions 4
-
Syntax Errors 08 minLecture13.1
-
Exceptions 08 minLecture13.2
-
User Defined Exceptions 10 minLecture13.3
-
Quiz on erros 0 questionQuiz13.1
-
-
Iterables and Iterators 4
-
Iterables and Iterators 16 minLecture14.1
-
Use iterators as function arguments 12 minLecture14.2
-
Zip and unzip 07 minLecture14.3
-
Quiz on iterables 0 questionQuiz14.1
-
-
List Comprehension 4
-
List Comprehension to avoid loop or lambda functions 11 minLecture15.1
-
List Comprehension to avoid nested loops 06 minLecture15.2
-
List Comprehension with conditions 04 minLecture15.3
-
Quiz on List Comprehension 0 questionQuiz15.1
-
-
Generators 1
-
Generators 17 minLecture16.1
-
-
Numpy Packages 5
-
Intro to Numpy 36 minLecture17.1
-
About NDarray 20 minLecture17.2
-
Quiz 0 questionQuiz17.1
-
Numpy 2D arrays 13 minLecture17.3
-
Basic Numpy stats 11 minLecture17.4
-
-
Pandas(Python Data Analysis Library) 8
-
Pandas Intro and Slicing DataFrame 23 minLecture18.1
-
DataFrame Filters 36 minLecture18.2
-
Transformations on DataFrame 13 minLecture18.3
-
Advanced Indexing 22 minLecture18.4
-
Create Index at the time of file import 06 minLecture18.5
-
Hierarchical indexing 18 minLecture18.6
-
Stack and Unstack 15 minLecture18.7
-
Groupby and aggregations 12 minLecture18.8
-
-
Matplotlib Visulization 5
-
Intro to Matplotlib Visulization 32 minLecture19.1
-
Multiple plots on single axis 12 minLecture19.2
-
Different line plots on distinct axes using axes 09 minLecture19.3
-
Different line plots on distinct axes using subplot 14 minLecture19.4
-
Legend Annotation and Styles 21 minLecture19.5
-
-
Importing Data from Files 7
-
About Working Directory 14 minLecture20.1
-
Importing Data from FlatFiles 09 minLecture20.2
-
Importing Data using loadtxt and genfromtxt 37 minLecture20.3
-
Working With Excel Reading 17 minLecture20.4
-
Working With Excel writing 08 minLecture20.5
-
Working with SAS and STATA files 11 minLecture20.6
-
Working with HDF5 Files 15 minLecture20.7
-
-
Importing Data From RDBMS 2
-
Working with SQLite Database Part 1 16 minLecture21.1
-
Working with SQLite Database Part 2 18 minLecture21.2
-
-
Import from internet 7
-
Import web Data 12 minLecture22.1
-
Import using URLlib packages 08 minLecture22.2
-
Import using requests package 14 minLecture22.3
-
Working with JSON files 12 minLecture22.4
-
Working with Movie Database 14 minLecture22.5
-
Working with Wikipedia database 02 minLecture22.6
-
Working with Twitter 10 minLecture22.7
-
-
Machine Learning Pre Processing 10
-
Data Cleaning Introduction 09 minLecture23.1
-
Melt or unpivot 14 minLecture23.2
-
Pivot and Pivot Table 08 minLecture23.3
-
Using Concat function to merge data frames row wise or column wise 14 minLecture23.4
-
Merge or Joins 14 minLecture23.5
-
Data Type Conversions 12 minLecture23.6
-
Regular Expressions 12 minLecture23.7
-
Dropping Duplicate Records 05 minLecture23.8
-
Filling Missing Data 08 minLecture23.9
-
Asserts 09 minLecture23.10
-
-
Machine Learning Models or Algorithms 28
-
Machine Learning Introduction 16 minLecture24.1
-
Types of Machine Learning Algorithm 37 minLecture24.2
-
k Nearest Neighbor Algorithm 14 minLecture24.3
-
K Nearest Neighbor Algorithm Non Parametric Method 19 minLecture24.4
-
Understand IRIS dataset 14 minLecture24.5
-
KNN lab1 24 minLecture24.6
-
KNN Train and Test (need to take one more time) 10 minLecture24.7
-
KNN Hyper Parameter Tunning 37 minLecture24.8
-
Logistic Regression Intro 13 minLecture24.9
-
Logistic Regression Lab1 20 minLecture24.10
-
Confusion Matrix ,Cllasification Report ,ROC curve and AUC 30 minLecture24.11
-
Hyper Parameter Tuning 12 minLecture24.12
-
Linear regression Algorithm Introduction 13 minLecture24.13
-
Linear Regression Algorithm Lab 1 22 minLecture24.14
-
Microsoft Azure ML cloud Introduction 1 24 minLecture24.15
-
Microsoft Azure ML cloud Introduction 2 31 minLecture24.16
-
R2 Square and RMSE Calculation 20 minLecture24.17
-
Train and Test Split Linear Regression 10 minLecture24.18
-
Cross Validation or k fold 08 minLecture24.19
-
Linear regression One more example using Boston Data 04 minLecture24.20
-
Support vector machines (SVMs) 31 minLecture24.21
-
ML Pre Processing ## Outliers 13 minLecture24.22
-
ML Pre Processing ## Categorical Data 20 minLecture24.23
-
ML Pre Processing ## Missing Data Data 18 minLecture24.24
-
ML Pre Processing ## ML Pipeline 20 minLecture24.25
-
Unsupervised Learning Introduction 14 minLecture24.26
-
Unsupervised Learning # K Means Clustering 38 minLecture24.27
-
Unsupervised Learning # Clustering Quality 14 minLecture24.28
-
-
NLU / NLP / Text Analytics/ Text Mining 11
-
NLP # Introduction 20 minLecture25.1
-
NLP # Regular Expressions# Tokenization 26 minLecture25.2
-
NLP # Word # Sentences # tweet #regex Tokenizations 24 minLecture25.3
-
123.Word counts with bag of words 12 minLecture25.4
-
124.Text pre-processing 09 minLecture25.5
-
125. Lemmatization_or_Stemming 10 minLecture25.6
-
126. Gensim 08 minLecture25.7
-
127. Tf-idf with gensim 05 minLecture25.8
-
128. Named Entity Recognition(NER) 29 minLecture25.9
-
129. SpaCy_Displacy 28 minLecture25.10
-
130. Multilingual NER with polyglot 05 minLecture25.11
-
131. Building a fake news classifier 40 minLecture25.12
-
-
Data Science Project Using NLP 8
-
132. NLP ChatBot Project Introduction 19 minLecture26.1
-
133. Understanding intents and entities 29 minLecture26.2
-
134. Word Vectors 18 minLecture26.3
-
135.RASA NLU Intro 45 minLecture26.4
-
136. Using RASA NLU to identify Entities 18 minLecture26.5
-
137. Access Data from SQLite Database with parameters 30 minLecture26.6
-
138. Exploring a DB with natural language 12 minLecture26.7
-
139. Creating SQL from natural language 21 minLecture26.8
-
-
Exams 1
-
Level 1 Exam 3 questionsQuiz27.1
-
-
Deep Learning 12
-
05_of_08_Deep_Learning_or_Neural_Network/ 30 minLecture28.1
-
DSP_L5_01_Introduction 30 minLecture28.2
-
DSP_L5_01_Introduction 30 minLecture28.3
-
DSP_L5_02_Model_Optimization 30 minLecture28.4
-
DSP_L5_03_Gradient_Descent 30 minLecture28.5
-
DSP_L5_03_Gradient_DescentLecture28.6
-
DSP_L5_04_Backward_Propagation 30 minLecture28.7
-
DSP_L5_04_Backward_Propagation 30 minLecture28.8
-
A Step by Step Backpropagation Example – Matt Mazur 30 minLecture28.9
-
DSP_L5_05_Keras_Introduction 30 minLecture28.10
-
DSP_L5_05_Keras_Regression_Model 30 minLecture28.11
-
DSP_L5_05_Keras_Regression_Model 30 minLecture28.12
-
DSP_L5_06_Creating_Keras_Classification_Models 30 minLecture28.13
-
DSP_L5_07_Understanding_Model_Optimization 30 minLecture28.14
-
DSP_L5_08_Model_Validation 30 minLecture28.15
-
DSP_L5_08_Model_Validation 30 minLecture28.16
-
DSP_L5_08_Model_Validation 30 minLecture28.17
-
DSP_L5_09_Model_CapacityLecture28.18
-
Create a New Repository 30 minLecture28.19
-
Project1_Identify_hand_written_digits 30 minLecture28.20
-
Project1_Identify_hand_written_digits 30 minLecture28.21
-
Project1_Identify_hand_written_digits 30 minLecture28.22
-
This content is protected, please login and enroll course to view this content!
