- 
	
    Data Science Demo 1In this Demo you will understand what is data science,who is data scientist ...etc - 
				
                About Faculty 04 minLecture1.1
- 
				
                What is Data Science 11 minLecture1.2
- 
				
                Who is data scientist 06 minLecture1.3
- 
				
                who can learn this course 11 minLecture1.4
- 
				
                Data Science Process Quick Tour 27 minLecture1.5
- 
				
                Data Science Quiz 4 questionsQuiz1.1
 
- 
				
                
- 
	
    Python Introduction and Anaconda Installation 2We will learn what is python and why we are using python in data science . why not other languages like c,c++,jave ... etc. We also learn how to install anaconda and more information about spyder IDE - 
				
                Python Introduction and Anaconda Installation 47 minLecture2.1
- 
				
                Quiz on Introduction 6 questionsQuiz2.1
- 
				
                Quiz on Installation 4 questionsQuiz2.2
 
- 
				
                
- 
	
    Python Data Types 7We will learn int,float,complex,bool,str data types - 
				
                Python as Calculator 10 minLecture3.1
- 
				
                Quiz on playing numbers 2 questionsQuiz3.1
- 
				
                Python int,float and complex data types 09 minLecture3.2
- 
				
                Quiz on numbers data types 4 questionsQuiz3.2
- 
				
                Python string Data types 24 minLecture3.3
- 
				
                Quiz on Strings 7 questionsQuiz3.3
- 
				
                Mutable Vs Immutable 16 minLecture3.4
 
- 
				
                
- 
	
    Python Lists 5- 
				
                Define List 14 minLecture4.1
- 
				
                Read List Items 10 minLecture4.2
- 
				
                Change List Items 08 minLecture4.3
- 
				
                List Memory allocation 05 minLecture4.4
- 
				
                Quiz on List 2 questionsQuiz4.1
 
- 
				
                
- 
	
    Operators 4- 
				
                Comparison Operators 19 minLecture5.1
- 
				
                Boolean Operators and Numpy Boolean Operators 11 minLecture5.2
- 
				
                Filtering data frame using operators 26 minLecture5.3
- 
				
                Quiz on Operators 2 questionsQuiz5.1
 
- 
				
                
- 
	
    Control Flows 6- 
				
                if elif elif else 16 minLecture6.1
- 
				
                while loop 13 minLecture6.2
- 
				
                for loop on string ,list,dict 21 minLecture6.3
- 
				
                for loop on numpy array 13 minLecture6.4
- 
				
                for loop on data frame 12 minLecture6.5
- 
				
                Quiz on Control Flows 7 questionsQuiz6.1
 
- 
				
                
- 
	
    Functions 7- 
				
                System Defined Functions 12 minLecture7.1
- 
				
                User Defined Functions 25 minLecture7.2
- 
				
                Tuple 13 minLecture7.3
- 
				
                Scope of variable objects in functions 20 minLecture7.4
- 
				
                Nested Functions 15 minLecture7.5
- 
				
                Default and Flexible Arguments 23 minLecture7.6
- 
				
                Quiz on Functions 3 questionsQuiz7.1
 
- 
				
                
- 
	
    Methods 2- 
				
                Methods 25 minLecture8.1
- 
				
                Quiz on Methods 0 questionQuiz8.1
 
- 
				
                
- 
	
    Modules 2- 
				
                Create and use Modules 26 minLecture9.1
- 
				
                Quiz on Modules 0 questionQuiz9.1
 
- 
				
                
- 
	
    Packages 3- 
				
                User Defined Packages 46 minLecture10.1
- 
				
                System Defined Packages 18 minLecture10.2
- 
				
                Quiz on packages 0 questionQuiz10.1
 
- 
				
                
- 
	
    Dictionaries 5- 
				
                Why we need dictionaries and Create simple dictionary 12 minLecture11.1
- 
				
                Dictionary Keys are Mutable and values are immutable 12 minLecture11.2
- 
				
                Nested Dictionaries 07 minLecture11.3
- 
				
                Create DataFrame using dictionary 12 minLecture11.4
- 
				
                Quiz on Dictionaries 2 questionsQuiz11.1
 
- 
				
                
- 
	
    Lambda Functions 4- 
				
                Lambda Map Function 20 minLecture12.1
- 
				
                Lambda Filter Function 10 minLecture12.2
- 
				
                Lambda Reduce Function 09 minLecture12.3
- 
				
                Quiz on Lambda Functions 2 questionsQuiz12.1
 
- 
				
                
- 
	
    Syntax Errors and Exceptions 4- 
				
                Syntax Errors 08 minLecture13.1
- 
				
                Exceptions 08 minLecture13.2
- 
				
                User Defined Exceptions 10 minLecture13.3
- 
				
                Quiz on erros 0 questionQuiz13.1
 
- 
				
                
- 
	
    Iterables and Iterators 4- 
				
                Iterables and Iterators 16 minLecture14.1
- 
				
                Use iterators as function arguments 12 minLecture14.2
- 
				
                Zip and unzip 07 minLecture14.3
- 
				
                Quiz on iterables 0 questionQuiz14.1
 
- 
				
                
- 
	
    List Comprehension 4- 
				
                List Comprehension to avoid loop or lambda functions 11 minLecture15.1
- 
				
                List Comprehension to avoid nested loops 06 minLecture15.2
- 
				
                List Comprehension with conditions 04 minLecture15.3
- 
				
                Quiz on List Comprehension 0 questionQuiz15.1
 
- 
				
                
- 
	
    Generators 1- 
				
                Generators 17 minLecture16.1
 
- 
				
                
- 
	
    Numpy Packages 5- 
				
                Intro to Numpy 36 minLecture17.1
- 
				
                About NDarray 20 minLecture17.2
- 
				
                Quiz 0 questionQuiz17.1
- 
				
                Numpy 2D arrays 13 minLecture17.3
- 
				
                Basic Numpy stats 11 minLecture17.4
 
- 
				
                
- 
	
    Pandas(Python Data Analysis Library) 8- 
				
                Pandas Intro and Slicing DataFrame 23 minLecture18.1
- 
				
                DataFrame Filters 36 minLecture18.2
- 
				
                Transformations on DataFrame 13 minLecture18.3
- 
				
                Advanced Indexing 22 minLecture18.4
- 
				
                Create Index at the time of file import 06 minLecture18.5
- 
				
                Hierarchical indexing 18 minLecture18.6
- 
				
                Stack and Unstack 15 minLecture18.7
- 
				
                Groupby and aggregations 12 minLecture18.8
 
- 
				
                
- 
	
    Matplotlib Visulization 5- 
				
                Intro to Matplotlib Visulization 32 minLecture19.1
- 
				
                Multiple plots on single axis 12 minLecture19.2
- 
				
                Different line plots on distinct axes using axes 09 minLecture19.3
- 
				
                Different line plots on distinct axes using subplot 14 minLecture19.4
- 
				
                Legend Annotation and Styles 21 minLecture19.5
 
- 
				
                
- 
	
    Importing Data from Files 7- 
				
                About Working Directory 14 minLecture20.1
- 
				
                Importing Data from FlatFiles 09 minLecture20.2
- 
				
                Importing Data using loadtxt and genfromtxt 37 minLecture20.3
- 
				
                Working With Excel Reading 17 minLecture20.4
- 
				
                Working With Excel writing 08 minLecture20.5
- 
				
                Working with SAS and STATA files 11 minLecture20.6
- 
				
                Working with HDF5 Files 15 minLecture20.7
 
- 
				
                
- 
	
    Importing Data From RDBMS 2- 
				
                Working with SQLite Database Part 1 16 minLecture21.1
- 
				
                Working with SQLite Database Part 2 18 minLecture21.2
 
- 
				
                
- 
	
    Import from internet 7- 
				
                Import web Data 12 minLecture22.1
- 
				
                Import using URLlib packages 08 minLecture22.2
- 
				
                Import using requests package 14 minLecture22.3
- 
				
                Working with JSON files 12 minLecture22.4
- 
				
                Working with Movie Database 14 minLecture22.5
- 
				
                Working with Wikipedia database 02 minLecture22.6
- 
				
                Working with Twitter 10 minLecture22.7
 
- 
				
                
- 
	
    Machine Learning Pre Processing 10- 
				
                Data Cleaning Introduction 09 minLecture23.1
- 
				
                Melt or unpivot 14 minLecture23.2
- 
				
                Pivot and Pivot Table 08 minLecture23.3
- 
				
                Using Concat function to merge data frames row wise or column wise 14 minLecture23.4
- 
				
                Merge or Joins 14 minLecture23.5
- 
				
                Data Type Conversions 12 minLecture23.6
- 
				
                Regular Expressions 12 minLecture23.7
- 
				
                Dropping Duplicate Records 05 minLecture23.8
- 
				
                Filling Missing Data 08 minLecture23.9
- 
				
                Asserts 09 minLecture23.10
 
- 
				
                
- 
	
    Machine Learning Models or Algorithms 28- 
				
                Machine Learning Introduction 16 minLecture24.1
- 
				
                Types of Machine Learning Algorithm 37 minLecture24.2
- 
				
                k Nearest Neighbor Algorithm 14 minLecture24.3
- 
				
                K Nearest Neighbor Algorithm Non Parametric Method 19 minLecture24.4
- 
				
                Understand IRIS dataset 14 minLecture24.5
- 
				
                KNN lab1 24 minLecture24.6
- 
				
                KNN Train and Test (need to take one more time) 10 minLecture24.7
- 
				
                KNN Hyper Parameter Tunning 37 minLecture24.8
- 
				
                Logistic Regression Intro 13 minLecture24.9
- 
				
                Logistic Regression Lab1 20 minLecture24.10
- 
				
                Confusion Matrix ,Cllasification Report ,ROC curve and AUC 30 minLecture24.11
- 
				
                Hyper Parameter Tuning 12 minLecture24.12
- 
				
                Linear regression Algorithm Introduction 13 minLecture24.13
- 
				
                Linear Regression Algorithm Lab 1 22 minLecture24.14
- 
				
                Microsoft Azure ML cloud Introduction 1 24 minLecture24.15
- 
				
                Microsoft Azure ML cloud Introduction 2 31 minLecture24.16
- 
				
                R2 Square and RMSE Calculation 20 minLecture24.17
- 
				
                Train and Test Split Linear Regression 10 minLecture24.18
- 
				
                Cross Validation or k fold 08 minLecture24.19
- 
				
                Linear regression One more example using Boston Data 04 minLecture24.20
- 
				
                Support vector machines (SVMs) 31 minLecture24.21
- 
				
                ML Pre Processing ## Outliers 13 minLecture24.22
- 
				
                ML Pre Processing ## Categorical Data 20 minLecture24.23
- 
				
                ML Pre Processing ## Missing Data Data 18 minLecture24.24
- 
				
                ML Pre Processing ## ML Pipeline 20 minLecture24.25
- 
				
                Unsupervised Learning Introduction 14 minLecture24.26
- 
				
                Unsupervised Learning # K Means Clustering 38 minLecture24.27
- 
				
                Unsupervised Learning # Clustering Quality 14 minLecture24.28
 
- 
				
                
- 
	
    NLU / NLP / Text Analytics/ Text Mining 11- 
				
                NLP # Introduction 20 minLecture25.1
- 
				
                NLP # Regular Expressions# Tokenization 26 minLecture25.2
- 
				
                NLP # Word # Sentences # tweet #regex Tokenizations 24 minLecture25.3
- 
				
                123.Word counts with bag of words 12 minLecture25.4
- 
				
                124.Text pre-processing 09 minLecture25.5
- 
				
                125. Lemmatization_or_Stemming 10 minLecture25.6
- 
				
                126. Gensim 08 minLecture25.7
- 
				
                127. Tf-idf with gensim 05 minLecture25.8
- 
				
                128. Named Entity Recognition(NER) 29 minLecture25.9
- 
				
                129. SpaCy_Displacy 28 minLecture25.10
- 
				
                130. Multilingual NER with polyglot 05 minLecture25.11
- 
				
                131. Building a fake news classifier 40 minLecture25.12
 
- 
				
                
- 
	
    Data Science Project Using NLP 8- 
				
                132. NLP ChatBot Project Introduction 19 minLecture26.1
- 
				
                133. Understanding intents and entities 29 minLecture26.2
- 
				
                134. Word Vectors 18 minLecture26.3
- 
				
                135.RASA NLU Intro 45 minLecture26.4
- 
				
                136. Using RASA NLU to identify Entities 18 minLecture26.5
- 
				
                137. Access Data from SQLite Database with parameters 30 minLecture26.6
- 
				
                138. Exploring a DB with natural language 12 minLecture26.7
- 
				
                139. Creating SQL from natural language 21 minLecture26.8
 
- 
				
                
- 
	
    Exams 1- 
				
                Level 1 Exam 3 questionsQuiz27.1
 
- 
				
                
- 
	
    Deep Learning 12- 
				
                05_of_08_Deep_Learning_or_Neural_Network/ 30 minLecture28.1
- 
				
                DSP_L5_01_Introduction 30 minLecture28.2
- 
				
                DSP_L5_01_Introduction 30 minLecture28.3
- 
				
                DSP_L5_02_Model_Optimization 30 minLecture28.4
- 
				
                DSP_L5_03_Gradient_Descent 30 minLecture28.5
- 
				
                DSP_L5_03_Gradient_DescentLecture28.6
- 
				
                DSP_L5_04_Backward_Propagation 30 minLecture28.7
- 
				
                DSP_L5_04_Backward_Propagation 30 minLecture28.8
- 
				
                A Step by Step Backpropagation Example – Matt Mazur 30 minLecture28.9
- 
				
                DSP_L5_05_Keras_Introduction 30 minLecture28.10
- 
				
                DSP_L5_05_Keras_Regression_Model 30 minLecture28.11
- 
				
                DSP_L5_05_Keras_Regression_Model 30 minLecture28.12
- 
				
                DSP_L5_06_Creating_Keras_Classification_Models 30 minLecture28.13
- 
				
                DSP_L5_07_Understanding_Model_Optimization 30 minLecture28.14
- 
				
                DSP_L5_08_Model_Validation 30 minLecture28.15
- 
				
                DSP_L5_08_Model_Validation 30 minLecture28.16
- 
				
                DSP_L5_08_Model_Validation 30 minLecture28.17
- 
				
                DSP_L5_09_Model_CapacityLecture28.18
- 
				
                Create a New Repository 30 minLecture28.19
- 
				
                Project1_Identify_hand_written_digits 30 minLecture28.20
- 
				
                Project1_Identify_hand_written_digits 30 minLecture28.21
- 
				
                Project1_Identify_hand_written_digits 30 minLecture28.22
 
- 
				
                
    This content is protected, please login and enroll course to view this content!
            Prev
            
				Exceptions            
        
	
	        
            Next
            
				Quiz on erros            
        
	