- 
	
    Data Science Demo 1- 
				
                About Faculty 04 minLecture1.1
- 
				
                What is Data Science 11 minLecture1.2
- 
				
                Who is data scientist 06 minLecture1.3
- 
				
                who can learn this course 11 minLecture1.4
- 
				
                Data Science Process Quick Tour 27 minLecture1.5
- 
				
                Data Science Quiz 4 questionsQuiz1.1
 
- 
				
                
- 
	
    Introduction of R 5- 
				
                Introduction of R 17 minLecture2.1
- 
				
                Installation of R and R Studio IDE 25 minLecture2.2
- 
				
                About R Studio 02 minLecture2.3
- 
				
                About Working Directory 14 minLecture2.4
- 
				
                Quiz on Introduction 0 questionQuiz2.1
 
- 
				
                
- 
	
    Data Types 1- 
				
                Data Types 44 minLecture3.1
- 
				
                Quiz on Data Types 0 questionQuiz3.1
 
- 
				
                
- 
	
    R language with machine learning 32- 
				
                01. Data Science Demo With R and Python 01 hour 30 minLecture4.1
- 
				
                02. Introduction and Installation of R 01 hourLecture4.2
- 
				
                03. Installation of R Studio and Data Types 01 hourLecture4.3
- 
				
                04. Vectors 48 minLecture4.4
- 
				
                05. Matrix 01 hourLecture4.5
- 
				
                06. Factors 58 minLecture4.6
- 
				
                07. DataFrame 01 hour 10 minLecture4.7
- 
				
                08. Data Fram Part 2 and List Part 1 01 hourLecture4.8
- 
				
                09. List Part 2 20 minLecture4.9
- 
				
                10. Read Data From Files Part 1 38 minLecture4.10
- 
				
                11. Read Data From Files Part 2 01 hour 20 minLecture4.11
- 
				
                12. Read Data from oracle database Part 1 01 hourLecture4.12
- 
				
                13. Read Data from oracle database Part 2 50 minLecture4.13
- 
				
                14. Writeing data to text files and if else conditions 01 hourLecture4.14
- 
				
                15. Loops 30 minLecture4.15
- 
				
                16. Functions 40 minLecture4.16
- 
				
                17. Packages amd Apply Functions Part 1 01 hourLecture4.17
- 
				
                18. Apply Functions Part 2 01 hourLecture4.18
- 
				
                19. Base Graphs Part 1 01 hourLecture4.19
- 
				
                20. Base Graphs Part 2 01 hour 04 minLecture4.20
- 
				
                21. Base Graphs Part 3 01 hour 05 minLecture4.21
- 
				
                22. Base Graphs Part 4 01 hour 20 minLecture4.22
- 
				
                23. Base Graphs Part 5 01 hourLecture4.23
- 
				
                24. ggplot2 Graphs Part 1 01 hour 10 minLecture4.24
- 
				
                25. ggplot2 Graphs Part 2 50 minLecture4.25
- 
				
                26. Cleaning Data Part 1 01 hour 10 minLecture4.26
- 
				
                27. Cleaning Data Part 2 40 minLecture4.27
- 
				
                28. Cleaning Data Part 3 01 hourLecture4.28
- 
				
                29. Machine Learning Introduction 01 hourLecture4.29
- 
				
                30. Machine Learning Linear Regression Part 2 01 hourLecture4.30
- 
				
                30. Machine Learning Linear Regression 30 minLecture4.31
- 
				
                31. Machine Learning Logestic Regression 01 hourLecture4.32
- 
				
                32. Machine Learning poisson and quasipoission regression 35 minLecture4.33
- 
				
                33. Machine Learning Unsupervised Learning Intro 30 minLecture4.34
- 
				
                34. Machine Learning Kmeans Clustering 30 minLecture4.35
- 
				
                35. Machine Learning hierarchical clustering 30 minLecture4.36
 
- 
				
                
    This content is protected, please login and enroll course to view this content!
