-
Data Analysis 8
-
DA01 Numpy Class 1Lecture1.1
-
DA02 Numpy Class 2Lecture1.2
-
DA03 Numpy Class 3Lecture1.3
-
DA04 Pandas Class 1Lecture1.4
-
DA05 Pandas Class 2Lecture1.5
-
DA06 Pandas Class 3Lecture1.6
-
DA07 Pandas Class 4Lecture1.7
-
DA08 Matplotlib Class 1Lecture1.8
-
-
Data Analytics 25
-
Material(DS01_01_Numpy package.ipynb)Lecture2.1
-
01_Introduction to Data Analyst Role 15 minLecture2.2
-
02_about_numpy 15 minLecture2.3
-
03_ Create 1D arrayLecture2.4
-
04_Reading 1D array 15 minLecture2.5
-
05_arrays_are_Mutable 15 minLecture2.6
-
06_About Iris Data Set 15 minLecture2.7
-
07_Create 1d array from column or Series 15 minLecture2.8
-
08_Create 2D array 15 minLecture2.9
-
09_Create 2D array from table or data frame 15 minLecture2.10
-
10_Create 2D array from Black and white image 15 minLecture2.11
-
11_Create 3D array 15 minLecture2.12
-
12_Create 4D array 15 minLecture2.13
-
13_Why we need to learn Numpy array 15 minLecture2.14
-
14_Numpy array homogeneous multidimensional array 15 minLecture2.15
-
15_NumPy array occupies less memory 15 minLecture2.16
-
Material(DS01_02_Numpy package.ipynb)Lecture2.17
-
16_Working with Basic Statistics 15 minLecture2.18
-
17_Standard Deviation Maths 15 minLecture2.19
-
18_Standard Deviation calculation with python code 15 minLecture2.20
-
19_Standard Deviation to find outliers 15 minLecture2.21
-
20_random sample 15 minLecture2.22
-
21 random bytes 15 minLecture2.23
-
22 random integersLecture2.24
-
23 permutations 15 minLecture2.25
-
24 Shuffle 15 minLecture2.26
-
25 Seed 15 minLecture2.27
-
26 Choice 15 minLecture2.28
-
27 Normal Distribution 15 minLecture2.29
-
29 Binomial 15 minLecture2.30
-
30_Working with linear algebra 15 minLecture2.31
-
31_Multiply two matrices 15 minLecture2.32
-
32_Inverse of a matrix 15 minLecture2.33
-
33_sort 15 minLecture2.34
-
34_unique 15 minLecture2.35
-
35_Set Operations 15 minLecture2.36
-
36_Broadcasting 15 minLecture2.37
-
37_Read or Write to Disk 15 minLecture2.38
-
-
Pandas 31
-
Material(DS02_01_Pandas Package for Data Analysis.ipynb)Lecture3.1
-
38_02_Pandas Introduction 15 minLecture3.2
-
39_02_Read Data Frame Method 1 15 minLecture3.3
-
40_02_Read Data Frame Method 2 15 minLecture3.4
-
41_02_Read Data Frame using labelLecture3.5
-
42_02_Read Data Frame using Integer Location 15 minLecture3.6
-
43_02_Create dataframe from another dataframe 15 minLecture3.7
-
44_02_Create Series from dataframe 15 minLecture3.8
-
45_02_Understand Spliting Machine Learning Input and outputLecture3.9
-
Material(DS02_02_Pandas Filtering DataFrame.ipynb)Lecture3.10
-
46_02_Apply Filters on DataFrame 15 minLecture3.11
-
47_02_Deep_copy_shallow_copy of dataframe 15 minLecture3.12
-
48_02_add one new column to dataframe 15 minLecture3.13
-
49_02_Working with all and any with nans 15 minLecture3.14
-
50_02_Drop samples with any nans 15 minLecture3.15
-
51_02_Working with all and any with zeros 15 minLecture3.16
-
52_02_Replace NaN with some value 15 minLecture3.17
-
Material(DS02_03_Pandas Transformation DataFrame.ipynb)Lecture3.18
-
53_02_Convert all metrics into dozens 15 minLecture3.19
-
54_02_Convert all metrics into dozens part2 15 minLecture3.20
-
55_02_About Indexes 15 minLecture3.21
-
56_02_add_two_columns 15 minLecture3.22
-
Material(DS02_04_Pandas_Advanced_Indexes_DataFrame.ipynb)Lecture3.23
-
57_02_Create index manually and by importing from file 15 minLecture3.24
-
58_02_Hierarchical indexing 15 minLecture3.25
-
Material(DS02_05_Pandas_pivot_stack_unstack.ipynb)Lecture3.26
-
59_02_Pivot 15 minLecture3.27
-
60_02_unstack_stack 15 minLecture3.28
-
Material(DS02_06_Pandas_groupby_aggregations.ipynb)Lecture3.29
-
61_02_Groupby and Aggregations part 1 15 minLecture3.30
-
62_02_Groupby and Aggregations part 2Lecture3.31
-
63_02_Groupby and Aggregations part 3 15 minLecture3.32
-
-
Matplotlib Data Visualization 13
-
Material(DS03_01_Data_Visualization_Using_Matplotlib.ipynb)Lecture4.1
-
64_03_Matplotlib Data Visualization 15 minLecture4.2
-
65_03_plot_part1 15 minLecture4.3
-
66_03_plot_part2 15 minLecture4.4
-
67_03_Scatter_Graph 15 minLecture4.5
-
68_03_Histogram_Graph 15 minLecture4.6
-
69_03_Histogram_Graph part 2 15 minLecture4.7
-
70_Multiple plots on single axis 15 minLecture4.8
-
71_Different line plots using subplotLecture4.9
-
72_xlim_ylim_and_axis 15 minLecture4.10
-
73_legend 15 minLecture4.11
-
74_03_Using annotate 15 minLecture4.12
-
75_03_Modifying styles 15 minLecture4.13
-
-
About Flat Files 7
-
Material(DS04_01_Import_Data_From_FlatFiles.ipynb)Lecture5.1
-
76_04_About Flat Files 15 minLecture5.2
-
77_04_Working with open Function 15 minLecture5.3
-
78_04_with_conjugate 15 minLecture5.4
-
79_04_Numpy_loadtxt_genfromtxt 15 minLecture5.5
-
80_04_Importing mixed data types using pandas package 15 minLecture5.6
-
81_04_Import file using pandas in customized format 15 minLecture5.7
-
-
Importing and exporting to Excel 3
-
Material(DS04_02_Import_Data_From_Excel.ipynb)Lecture6.1
-
82_05_Importing and exporting to Excel 15 minLecture6.2
-
83_05_xlsxwriter package for excel 15 minLecture6.3
-
-
Import SAS and STATA Files 2
-
Material(DS04_03_Import_Data_From_SAS_and_STATA_Files.ipynb)Lecture7.1
-
84_06_Import SAS and STATA Files 15 minLecture7.2
-
-
Import HDF5 Files 2
-
Material(DS04_04_Import_Data_From_HDF5_File.ipynb)Lecture8.1
-
85_07_Import HDF5 Files 15 minLecture8.2
-
-
Import from Relational Database Sqlite 3
-
Material(DS04_05_00_Imort_data_from_Sqlite.ipynb)Lecture9.1
-
86_08_Import from Relational Database Sqlite part 1 15 minLecture9.2
-
87_08_Import from Relational Database Sqlite part 1 15 minLecture9.3
-
-
DBeaver Universal Database Tool 6
-
Material(DS04_05_01_Imort_data_from_mysql.ipynb)Lecture10.1
-
88_09_DBeaver Universal Database Tool 15 minLecture10.2
-
89_09_Working with MySql Database Part 1 15 minLecture10.3
-
90_09_Working with MySql Database part 2 15 minLecture10.4
-
91_09_Working with MySql Database With Conjugator and pandas 15 minLecture10.5
-
92_09_Working with MySql Database using MySql Connector 15 minLecture10.6
-
-
Working with Mongo NoSQL databse Introduction 7
-
Material(DS04_05_02_Imort_data_from_Mongo.ipynb)Lecture11.1
-
93_10_Working with Mongo NoSQL databse Introduction 15 minLecture11.2
-
94_10_List Databases of Mongo DB 10 minLecture11.3
-
95_10_Create a new DataBase Collection and Documents 15 minLecture11.4
-
96_10_Create users in DataBase 15 minLecture11.5
-
97_10_Read mongo collection in DataFrame format 15 minLecture11.6
-
98_10_Studio 3T for MongoDB 15 minLecture11.7
-
-
Import files from web 3
-
Material(DS04_06_Import_data_from_web_data.ipynb)Lecture12.1
-
99_11_Import files from web 15 minLecture12.2
-
100_11_Working with web files without saving locally 15 minLecture12.3
-
-
Import data using Open Movie Database APIs 1
-
Material(DS04_10_Import_data_from_Movie_and_Wikipedia_APIs.ipynb)Lecture13.1
-
101_12_Import data using APIs 15 minLecture13.2
-
-
Import data from Wikipedia and Twitter using API 3
-
Material(DS04_11_Import_data_from_twitter_API_tweepy.ipynb)Lecture14.1
-
102_13_Import data from WIKI using API 15 minLecture14.2
-
103_13_Import data from twitter using API 15 minLecture14.3
-
-
ETL Introduction 6
-
Material(DS05_01_ETL_Melt_Pivot_and_pivot_table.ipynb)Lecture15.1
-
104_14_ETL Introduction 15 minLecture15.2
-
105_14_ETL Melt part1 15 minLecture15.3
-
106_14_ETL Melt part2 15 minLecture15.4
-
107_14_ETL Pivot 15 minLecture15.5
-
108_14_ETL Pivot Table 15 minLecture15.6
-
-
Concat DataFrames and Glob Module 3
-
Material(DS05_02_Concat_dfs_and_glob_module.ipynb)Lecture16.1
-
109_15_Concat dataframes row wise 15 minLecture16.2
-
110_16_Concat dataframes column wise 15 minLecture16.3
-
-
Join or Merge two DataFrames 3
-
Material(DS05_02_Merge_or_Join.ipynb)Lecture17.1
-
112_16_Inner join two DataFrames 15 minLecture17.2
-
113_16_Right Outer join two DataFrames 15 minLecture17.3
-
-
Converting object data type 4
-
Material(DS05_03_DataType_conversions.ipynb)Lecture18.1
-
114_17_Converting object data type into Category Datatype 15 minLecture18.2
-
115_17_Converting object datatype into Number Datatype 15 minLecture18.3
-
116_17_Converting into Date and time 15 minLecture18.4
-
-
Regular Expressions Introduction 6
-
Material(DS05_04_Regular_Expressions.ipynb)Lecture19.1
-
117_18_Regular Expressions Introduction 15 minLecture19.2
-
118_18_Regular Expressions patterns part 2 15 minLecture19.3
-
119_18_Regular Expressions patterns part1 15 minLecture19.4
-
120_19_Dropping duplicate data 15 minLecture19.5
-
121_19_Filling missing data 15 minLecture19.6
-
-
Correlation 4
-
Positive and Negative CorrelationLecture20.1
-
No CorrelationLecture20.2
-
Correlation MatrixLecture20.3
-
MaterialLecture20.4
-
