- 
	
    Machine Learning Introduction 0- 
				
                ML01_01_Machine Learning Introduction and Defination 15 minLecture1.1
- 
				
                Ml02_01_ETP_Defimation 15 minLecture1.2
- 
				
                ML03_01_Applications of ML 15 minLecture1.3
- 
				
                ML04_01_Types of Machine Learning and Supervised Learning Introduction 15 minLecture1.4
- 
				
                ML05_01_UnSupervised Learning Introduction 15 minLecture1.5
- 
				
                ML06_01_reading _sklearn_ml_package_help_document part 1 15 minLecture1.6
- 
				
                ML07_01_reading _sklearn_ml_package_help_document part 2 15 minLecture1.7
- 
				
                ML08_01_Test Your Understanding 15 minLecture1.8
 
- 
				
                
- 
	
    Explore Toy-Datasets 6- 
				
                ML09_02_Explore Toy-Datasets 15 minLecture2.1
- 
				
                ML10_02_Explore iris Dataset 15 minLecture2.2
- 
				
                ML11_02_Similarly explore remaining toy datasets 15 minLecture2.3
- 
				
                ML12_02_Create DataFrame from sklearn Bunch 15 minLecture2.4
- 
				
                ML13_02_Create a Bunch with our own data 15 minLecture2.5
- 
				
                ML14_02_Create a Bunch with our own data part 2 15 minLecture2.6
 
- 
				
                
- 
	
    k nearest neighbor algorithm Maths 5- 
				
                ML15_03_k nearest neighbor algorithm Maths 15 minLecture3.1
- 
				
                ML16_03_Find unknown sample quality based on known samples 15 minLecture3.2
- 
				
                ML17_03_Find unknown flower name based on known flower names using MS excel 15 minLecture3.3
- 
				
                ML18_03_Importance of n_neighbors 15 minLecture3.4
- 
				
                ML19_03_Hamming distance 15 minLecture3.5
 
- 
				
                
- 
	
    KNN Estimator from Scratch 16- 
				
                ML20_04_KNN Estimator from Scratch 15 minLecture4.1
- 
				
                ML21_04_Write code to Locate the most similar neighbors 15 minLecture4.2
- 
				
                ML22_04_Write code to Make a classification prediction with neighbors 15 minLecture4.3
- 
				
                ML23_04_High level End to End ML project Steps 15 minLecture4.4
- 
				
                ML24_04_Load csv file and Understand X and y Data 15 minLecture4.5
- 
				
                ML25_04_Split Data for training and testing 15 minLecture4.6
- 
				
                ML26_04_Train or fit the model 15 minLecture4.7
- 
				
                ML27_04_Predict labels of test data 15 minLecture4.8
- 
				
                ML28_04_Accuracy_of_the_Clasification_model 15 minLecture4.9
- 
				
                ML29_04_Hyper_Parameter_tunningLecture4.10
- 
				
                ML30_04_k means cross validation 15 minLecture4.11
- 
				
                ML31_04_GridSearchCV Hyper Parameter Tunning 15 minLecture4.12
- 
				
                ML32_04_RandomizedSearchCV Hyper Parameter Tunning 15 minLecture4.13
- 
				
                ML33_04_Save The model 15 minLecture4.14
- 
				
                ML34_04_Load The model 15 minLecture4.15
- 
				
                ML35_04_Home_Work 15 minLecture4.16
 
- 
				
                
- 
	
    Linear Regression Maths 15- 
				
                ML36_05_Linear Regression Maths 15 minLecture5.1
- 
				
                ML37_05_Find weight of the baby based on age data understanding 15 minLecture5.2
- 
				
                ML38_05_Ordinary Least Squares 15 minLecture5.3
- 
				
                ML39_05_Find parameters using Ordinary Least Squares Function 15 minLecture5.4
- 
				
                ML40_05_Find parameters using sklearn 15 minLecture5.5
- 
				
                ML41_05_Find parameters using Scipy 15 minLecture5.6
- 
				
                ML42_05_Find parameters using covar and var 15 minLecture5.7
- 
				
                ML43_05_Multivariate Linear Regression 15 minLecture5.8
- 
				
                ML44_05_Linear_regression_to find life span based on number of fertilities part 1 15 minLecture5.9
- 
				
                ML45_05_Linear_regression_to find life span based on number of fertilities part 2 15 minLecture5.10
- 
				
                ML46_05_Supervised_Regression_Metric_R2_score 15 minLecture5.11
- 
				
                ML47_05_Supervised_Regression_Metrics_RMSE 15 minLecture5.12
- 
				
                ML48_05_Life Span Predication 15 minLecture5.13
- 
				
                ML49_05_Linear Regression with Cross Validation or K-Fold 15 minLecture5.14
- 
				
                ML50_05_Linear Regression with Boston dataset 15 minLecture5.15
 
- 
				
                
- 
	
    Logistic Regression 6- 
				
                ML51_06_Logistic Regression Maths 15 minLecture6.1
- 
				
                ML52_06_Logistic Regression Binary ClasificationLecture6.2
- 
				
                ML_53_06_Confusion Matrix 15 minLecture6.3
- 
				
                ML_54_06_Classification Report 15 minLecture6.4
- 
				
                ML_55_06_ROC Curve 15 minLecture6.5
- 
				
                ML_56_06_AUC Computation 15 minLecture6.6
 
- 
				
                
- 
	
    Support Vector Machines 5- 
				
                ML_57_07_Support Vector Machines Introduction 15 minLecture7.1
- 
				
                ML_58_07_Support Vectors and Maximizing the Margin 15 minLecture7.2
- 
				
                ML_59_07_Non_linear_Support Vectors and Maximizing the Margin 15 minLecture7.3
- 
				
                ML_60_07_upport Vector Machines Using Iris Toy Data set 15 minLecture7.4
- 
				
                ML_61_07_Support_Vector_Machines_for_Face_Recognition 15 minLecture7.5
 
- 
				
                
- 
	
    Pre-processing of machine learning 6- 
				
                ML_62_08_Pre-processing of machine learning data Outliers 15 minLecture8.1
- 
				
                ML_63_08_Pre-processing of machine learning data Delete Outliers 15 minLecture8.2
- 
				
                ML_64_08_Pre-processing Categorical Features 15 minLecture8.3
- 
				
                ML_65_08_Pre-processing Categorical Features part2 15 minLecture8.4
- 
				
                ML_66_08_Regression with categorical features using ridge algorithm 15 minLecture8.5
- 
				
                ML_67_08_Dropping Missing Data 15 minLecture8.6
 
- 
				
                
- 
	
    ML_Pipeline with feature_selection and SVC 2- 
				
                ML_68_09_ML_Pipeline with feature_selection and SVCLecture9.1
- 
				
                ML_69_09_ML_Pipeline with SimpleImputer and SVC 15 minLecture9.2
 
- 
				
                
- 
	
    Trees Entropy and Gini Maths Introduction 10- 
				
                ML_70_10_Trees Entropy and Gini Maths IntroductionLecture10.1
- 
				
                ML_71_10_Entropy Calculation using weather datasetLecture10.2
- 
				
                ML_72_10_Entropy Calculation using weather dataset part 2 15 minLecture10.3
- 
				
                ML_73_10_Entropy Calculation using weather dataset part 3 15 minLecture10.4
- 
				
                ML_74_10_Entropy Calculation using weather dataset part 4 15 minLecture10.5
- 
				
                ML_75_10_Decision_Tree 15 minLecture10.6
- 
				
                ML_76_10_Predict_Tumor_is_cancer_not_a_cancerLecture10.7
- 
				
                ML_77_10_Tree_Graph_Visulization 15 minLecture10.8
- 
				
                ML_78_10_Logistic_regression_and_Decision_tree_accuracy_compare 15 minLecture10.9
- 
				
                ML_79_10_Gini_Vs_Entropy 15 minLecture10.10
 
- 
				
                
- 
	
    BIAS_Variance_Tradeoff_part 4- 
				
                ML_80_11_BIAS_Variance_Tradeoff_part1 15 minLecture11.1
- 
				
                ML_81_11_BIAS_Variance_Tradeoff_part2 15 minLecture11.2
- 
				
                ML_82_11_BIAS_Variance_Tradeoff_part3 15 minLecture11.3
- 
				
                ML_83_11_BIAS_Variance_Tradeoff_part4 15 minLecture11.4
 
- 
				
                
- 
	
    Ensemble_Learning_Introduction 5- 
				
                ML_84_12_Ensemble_Learning_Introduction 15 minLecture12.1
- 
				
                ML_85_12_Voting_Classifier_Introduction 15 minLecture12.2
- 
				
                ML_86_12_Voting_Classifier_for_Predict_Liver_Disease 15 minLecture12.3
- 
				
                ML_87_12_Voting_Classifier_for_Predict_Liver_Disease_preprocess 15 minLecture12.4
- 
				
                ML_88_12_Voting_Classifier_for_Predict_Liver_Disease_Train_the_Model 15 minLecture12.5
 
- 
				
                
- 
	
    Bagging_Classifier_Introduction 4- 
				
                ML_89_13_Bagging_Classifier_Introduction 15 minLecture13.1
- 
				
                ML_90_13_Bagging_Classifier 15 minLecture13.2
- 
				
                ML_91_13_Out_of_Bagging_Accuracy 15 minLecture13.3
- 
				
                ML_92_13_Tree_Vs_Bagging 15 minLecture13.4
 
- 
				
                
- 
	
    Random_Forests_Introduction 3- 
				
                ML_93_14_Random_Forests_Introduction 15 minLecture14.1
- 
				
                ML_94_14_Random_Forests_on_auto_dataset 15 minLecture14.2
- 
				
                ML_95_14_Random_Forests_Feature_Importance 15 minLecture14.3
 
- 
				
                
- 
	
    AdaBoost_Introduction 6- 
				
                ML_96_15_AdaBoost_IntroductionLecture15.1
- 
				
                ML_97_15_AdaBoost_MathsLecture15.2
- 
				
                GghhLecture15.3
- 
				
                ML_99_15_AdaBoost_Help_document Part 2Lecture15.4
- 
				
                ML_100_15_AdaBoost_on_Iris_dataset Part1Lecture15.5
- 
				
                ML_101_15_AdaBoost_on_Iris_dataset part2Lecture15.6
 
- 
				
                
- 
	
    ML_102_16_UnSupervised_Learning_Introduction 3- 
				
                ML_102_16_UnSupervised_Learning_IntroductionLecture16.1
- 
				
                ML_103_16_KMeans_MathsLecture16.2
- 
				
                ML_104_16_KMeans_on_iris_datasetLecture16.3
 
- 
				
                
