-
Machine Learning Introduction 0
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
Lecture1.5
-
Lecture1.6
-
Lecture1.7
-
Lecture1.8
-
-
Explore Toy-Datasets 6
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
Lecture2.6
-
-
k nearest neighbor algorithm Maths 5
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
Lecture3.5
-
-
KNN Estimator from Scratch 16
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
Lecture4.8
-
Lecture4.9
-
Lecture4.10
-
Lecture4.11
-
Lecture4.12
-
Lecture4.13
-
Lecture4.14
-
Lecture4.15
-
Lecture4.16
-
-
Linear Regression Maths 15
-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
Lecture5.4
-
Lecture5.5
-
Lecture5.6
-
Lecture5.7
-
Lecture5.8
-
Lecture5.9
-
Lecture5.10
-
Lecture5.11
-
Lecture5.12
-
Lecture5.13
-
Lecture5.14
-
Lecture5.15
-
-
Logistic Regression 6
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
Lecture6.4
-
Lecture6.5
-
Lecture6.6
-
-
Support Vector Machines 5
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
Lecture7.4
-
Lecture7.5
-
-
Pre-processing of machine learning 6
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
-
ML_Pipeline with feature_selection and SVC 2
-
Lecture9.1
-
Lecture9.2
-
-
Trees Entropy and Gini Maths Introduction 10
-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
Lecture10.6
-
Lecture10.7
-
Lecture10.8
-
Lecture10.9
-
Lecture10.10
-
-
BIAS_Variance_Tradeoff_part 4
-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
-
Ensemble_Learning_Introduction 5
-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Lecture12.4
-
Lecture12.5
-
-
Bagging_Classifier_Introduction 4
-
Lecture13.1
-
Lecture13.2
-
Lecture13.3
-
Lecture13.4
-
-
Random_Forests_Introduction 3
-
Lecture14.1
-
Lecture14.2
-
Lecture14.3
-
-
AdaBoost_Introduction 6
-
Lecture15.1
-
Lecture15.2
-
Lecture15.3
-
Lecture15.4
-
Lecture15.5
-
Lecture15.6
-
-
ML_102_16_UnSupervised_Learning_Introduction 3
-
Lecture16.1
-
Lecture16.2
-
Lecture16.3
-
This content is protected, please login and enroll course to view this content!